3.487 \(\int \frac{1}{(a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}})^{3/2}} \, dx\)

Optimal. Leaf size=300 \[ \frac{3 b^5 \left (a+\frac{b}{\sqrt [3]{x}}\right )}{2 a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}} \left (a \sqrt [3]{x}+b\right )^2}-\frac{15 b^4 \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}} \left (a \sqrt [3]{x}+b\right )}+\frac{18 b^2 \sqrt [3]{x} \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^5 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}-\frac{9 b x^{2/3} \left (a+\frac{b}{\sqrt [3]{x}}\right )}{2 a^4 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}+\frac{x \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^3 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}-\frac{30 b^3 \left (a+\frac{b}{\sqrt [3]{x}}\right ) \log \left (a \sqrt [3]{x}+b\right )}{a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}} \]

[Out]

(3*b^5*(a + b/x^(1/3)))/(2*a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]*(b + a*x^(1/3))^2) - (15*b^4*(a + b/x
^(1/3)))/(a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]*(b + a*x^(1/3))) + (18*b^2*(a + b/x^(1/3))*x^(1/3))/(a
^5*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]) - (9*b*(a + b/x^(1/3))*x^(2/3))/(2*a^4*Sqrt[a^2 + b^2/x^(2/3) +
(2*a*b)/x^(1/3)]) + ((a + b/x^(1/3))*x)/(a^3*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]) - (30*b^3*(a + b/x^(1/
3))*Log[b + a*x^(1/3)])/(a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)])

________________________________________________________________________________________

Rubi [A]  time = 0.187466, antiderivative size = 300, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {1341, 1355, 263, 43} \[ \frac{3 b^5 \left (a+\frac{b}{\sqrt [3]{x}}\right )}{2 a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}} \left (a \sqrt [3]{x}+b\right )^2}-\frac{15 b^4 \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}} \left (a \sqrt [3]{x}+b\right )}+\frac{18 b^2 \sqrt [3]{x} \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^5 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}-\frac{9 b x^{2/3} \left (a+\frac{b}{\sqrt [3]{x}}\right )}{2 a^4 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}+\frac{x \left (a+\frac{b}{\sqrt [3]{x}}\right )}{a^3 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}}-\frac{30 b^3 \left (a+\frac{b}{\sqrt [3]{x}}\right ) \log \left (a \sqrt [3]{x}+b\right )}{a^6 \sqrt{a^2+\frac{2 a b}{\sqrt [3]{x}}+\frac{b^2}{x^{2/3}}}} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3))^(-3/2),x]

[Out]

(3*b^5*(a + b/x^(1/3)))/(2*a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]*(b + a*x^(1/3))^2) - (15*b^4*(a + b/x
^(1/3)))/(a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]*(b + a*x^(1/3))) + (18*b^2*(a + b/x^(1/3))*x^(1/3))/(a
^5*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]) - (9*b*(a + b/x^(1/3))*x^(2/3))/(2*a^4*Sqrt[a^2 + b^2/x^(2/3) +
(2*a*b)/x^(1/3)]) + ((a + b/x^(1/3))*x)/(a^3*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)]) - (30*b^3*(a + b/x^(1/
3))*Log[b + a*x^(1/3)])/(a^6*Sqrt[a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3)])

Rule 1341

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Dist[k, Subst[I
nt[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] &
& FractionQ[n]

Rule 1355

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}\right )^{3/2}} \, dx &=3 \operatorname{Subst}\left (\int \frac{x^2}{\left (a^2+\frac{b^2}{x^2}+\frac{2 a b}{x}\right )^{3/2}} \, dx,x,\sqrt [3]{x}\right )\\ &=\frac{\left (3 b^2 \left (a b+\frac{b^2}{\sqrt [3]{x}}\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (a b+\frac{b^2}{x}\right )^3} \, dx,x,\sqrt [3]{x}\right )}{\sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}\\ &=\frac{\left (3 b^2 \left (a b+\frac{b^2}{\sqrt [3]{x}}\right )\right ) \operatorname{Subst}\left (\int \frac{x^5}{\left (b^2+a b x\right )^3} \, dx,x,\sqrt [3]{x}\right )}{\sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}\\ &=\frac{\left (3 b^2 \left (a b+\frac{b^2}{\sqrt [3]{x}}\right )\right ) \operatorname{Subst}\left (\int \left (\frac{6}{a^5 b}-\frac{3 x}{a^4 b^2}+\frac{x^2}{a^3 b^3}-\frac{b^2}{a^5 (b+a x)^3}+\frac{5 b}{a^5 (b+a x)^2}-\frac{10}{a^5 (b+a x)}\right ) \, dx,x,\sqrt [3]{x}\right )}{\sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}\\ &=\frac{3 \left (a b^5+\frac{b^6}{\sqrt [3]{x}}\right )}{2 a^6 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}} \left (b+a \sqrt [3]{x}\right )^2}-\frac{15 \left (a b^4+\frac{b^5}{\sqrt [3]{x}}\right )}{a^6 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}} \left (b+a \sqrt [3]{x}\right )}+\frac{18 \left (a b^2+\frac{b^3}{\sqrt [3]{x}}\right ) \sqrt [3]{x}}{a^5 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}-\frac{9 \left (a b+\frac{b^2}{\sqrt [3]{x}}\right ) x^{2/3}}{2 a^4 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}+\frac{\left (a+\frac{b}{\sqrt [3]{x}}\right ) x}{a^3 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}-\frac{30 \left (a b^3+\frac{b^4}{\sqrt [3]{x}}\right ) \log \left (b+a \sqrt [3]{x}\right )}{a^6 \sqrt{a^2+\frac{b^2}{x^{2/3}}+\frac{2 a b}{\sqrt [3]{x}}}}\\ \end{align*}

Mathematica [A]  time = 0.0897873, size = 126, normalized size = 0.42 \[ \frac{\left (a \sqrt [3]{x}+b\right ) \left (63 a^2 b^3 x^{2/3}+20 a^3 b^2 x-5 a^4 b x^{4/3}+2 a^5 x^{5/3}+6 a b^4 \sqrt [3]{x}-60 b^3 \left (a \sqrt [3]{x}+b\right )^2 \log \left (a \sqrt [3]{x}+b\right )-27 b^5\right )}{2 a^6 x \left (\frac{\left (a \sqrt [3]{x}+b\right )^2}{x^{2/3}}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + b^2/x^(2/3) + (2*a*b)/x^(1/3))^(-3/2),x]

[Out]

((b + a*x^(1/3))*(-27*b^5 + 6*a*b^4*x^(1/3) + 63*a^2*b^3*x^(2/3) + 20*a^3*b^2*x - 5*a^4*b*x^(4/3) + 2*a^5*x^(5
/3) - 60*b^3*(b + a*x^(1/3))^2*Log[b + a*x^(1/3)]))/(2*a^6*((b + a*x^(1/3))^2/x^(2/3))^(3/2)*x)

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 141, normalized size = 0.5 \begin{align*}{\frac{1}{2\,x{a}^{6}} \left ( 2\,{a}^{5}{x}^{5/3}-5\,{a}^{4}b{x}^{4/3}-60\,{x}^{2/3}\ln \left ( b+a\sqrt [3]{x} \right ){a}^{2}{b}^{3}+63\,{x}^{2/3}{a}^{2}{b}^{3}-120\,\sqrt [3]{x}\ln \left ( b+a\sqrt [3]{x} \right ) a{b}^{4}+6\,a{b}^{4}\sqrt [3]{x}-60\,\ln \left ( b+a\sqrt [3]{x} \right ){b}^{5}+20\,{a}^{3}{b}^{2}x-27\,{b}^{5} \right ) \left ( b+a\sqrt [3]{x} \right ) \left ({ \left ({a}^{2}{x}^{{\frac{2}{3}}}+2\,ab\sqrt [3]{x}+{b}^{2} \right ){x}^{-{\frac{2}{3}}}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2+b^2/x^(2/3)+2*a*b/x^(1/3))^(3/2),x)

[Out]

1/2/((a^2*x^(2/3)+2*a*b*x^(1/3)+b^2)/x^(2/3))^(3/2)/x*(2*a^5*x^(5/3)-5*a^4*b*x^(4/3)-60*x^(2/3)*ln(b+a*x^(1/3)
)*a^2*b^3+63*x^(2/3)*a^2*b^3-120*x^(1/3)*ln(b+a*x^(1/3))*a*b^4+6*a*b^4*x^(1/3)-60*ln(b+a*x^(1/3))*b^5+20*a^3*b
^2*x-27*b^5)*(b+a*x^(1/3))/a^6

________________________________________________________________________________________

Maxima [A]  time = 1.02366, size = 131, normalized size = 0.44 \begin{align*} \frac{2 \, a^{5} x^{\frac{5}{3}} - 5 \, a^{4} b x^{\frac{4}{3}} + 20 \, a^{3} b^{2} x + 63 \, a^{2} b^{3} x^{\frac{2}{3}} + 6 \, a b^{4} x^{\frac{1}{3}} - 27 \, b^{5}}{2 \,{\left (a^{8} x^{\frac{2}{3}} + 2 \, a^{7} b x^{\frac{1}{3}} + a^{6} b^{2}\right )}} - \frac{30 \, b^{3} \log \left (a x^{\frac{1}{3}} + b\right )}{a^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2+b^2/x^(2/3)+2*a*b/x^(1/3))^(3/2),x, algorithm="maxima")

[Out]

1/2*(2*a^5*x^(5/3) - 5*a^4*b*x^(4/3) + 20*a^3*b^2*x + 63*a^2*b^3*x^(2/3) + 6*a*b^4*x^(1/3) - 27*b^5)/(a^8*x^(2
/3) + 2*a^7*b*x^(1/3) + a^6*b^2) - 30*b^3*log(a*x^(1/3) + b)/a^6

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2+b^2/x^(2/3)+2*a*b/x^(1/3))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a^{2} + \frac{2 a b}{\sqrt [3]{x}} + \frac{b^{2}}{x^{\frac{2}{3}}}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2+b**2/x**(2/3)+2*a*b/x**(1/3))**(3/2),x)

[Out]

Integral((a**2 + 2*a*b/x**(1/3) + b**2/x**(2/3))**(-3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.22877, size = 163, normalized size = 0.54 \begin{align*} -\frac{30 \, b^{3} \log \left ({\left | a x^{\frac{1}{3}} + b \right |}\right )}{a^{6} \mathrm{sgn}\left (a x^{\frac{2}{3}} + b x^{\frac{1}{3}}\right )} - \frac{3 \,{\left (10 \, a b^{4} x^{\frac{1}{3}} + 9 \, b^{5}\right )}}{2 \,{\left (a x^{\frac{1}{3}} + b\right )}^{2} a^{6} \mathrm{sgn}\left (a x^{\frac{2}{3}} + b x^{\frac{1}{3}}\right )} + \frac{2 \, a^{6} x - 9 \, a^{5} b x^{\frac{2}{3}} + 36 \, a^{4} b^{2} x^{\frac{1}{3}}}{2 \, a^{9} \mathrm{sgn}\left (a x^{\frac{2}{3}} + b x^{\frac{1}{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2+b^2/x^(2/3)+2*a*b/x^(1/3))^(3/2),x, algorithm="giac")

[Out]

-30*b^3*log(abs(a*x^(1/3) + b))/(a^6*sgn(a*x^(2/3) + b*x^(1/3))) - 3/2*(10*a*b^4*x^(1/3) + 9*b^5)/((a*x^(1/3)
+ b)^2*a^6*sgn(a*x^(2/3) + b*x^(1/3))) + 1/2*(2*a^6*x - 9*a^5*b*x^(2/3) + 36*a^4*b^2*x^(1/3))/(a^9*sgn(a*x^(2/
3) + b*x^(1/3)))